TY - JOUR T1 - Elevation and climatic tolerance: a test using dung beetles JF - Oikos Y1 - 1999 A1 - Gaston, K. J. A1 - Chown, S. L. SP - 584 EP - 590 KW - arthropods KW - cold-hardiness KW - critical thermal maximum KW - desert KW - drosophila-melanogaster KW - latitudinal gradient KW - lepidoptera KW - namib KW - rapoports rule KW - temperature tolerance KW - tenebrionid beetles KW - terrestrial AB - An increase in the altitudinal range of occurrence of species in an assemblage with increasing elevation has been explained as a consequence of individual organisms having to be able to withstand a broader range of climatic conditions at higher elevations; the climatic variability hypothesis. Here we show that for scarab dung beetles (26 species) across an elevational transect (approx. 2500 In) in southern Africa thermal tolerance range does increase with increasing elevation across individuals and across species. The maximal thermal tolerance range exhibited increases slowly with elevation and the minimum range increases more rapidly. The mechanistic basis of the change appears to be one of rapidly changing critical thermal minimum (CTmin) with elevation and only small changes in critical thermal maximum (CTmax). Of course, even if the pattern of tolerance of species assumed by the climatic variability hypothesis is correct, an increase in altitudinal range with increasing elevation need not necessarily follow. However, although sampling has been limited, there does appear to be an elevational increase in altitudinal range for this species assemblage. VL - 86 UR - ://000082248200019 N1 - Times Cited: 8Cited Reference Count: 47Cited References: ALLEE WC, 1949, PRINCIPLES ANIMAL EC BENNETT AF, 1997, EVOLUTION, V51, P36 BLOCK W, 1982, COMP BIOCHEM PHYS A, V73, P581 BLOCK W, 1990, PHILOS T ROY SOC B, V326, P613 BRATTSTROM BH, 1968, COMP BIOCHEM PHYSIOL, V24, P93 CHOWN SL, 1999, IN PRESS BIOL REV CHOWN SL, 1992, S AFR J ANTARCT RES, V22, P51 DAVIS ALV, 1997, AFR J ECOL, V35, P10 DAVIS ALV, IN PRESS J BIOGEOGR DENLINGER DL, 1991, INSECTS LOW TEMPERAT, P131 DOBZHANSKY T, 1950, AM SCI, V38, P209 EDNEY EB, 1971, J EXP BIOL, V55, P253 FERGUSON SH, 1996, ECOGRAPHY, V19, P382 FLEISHMAN E, 1998, ECOLOGY, V79, P2482 GASTON KJ, 1999, OIKOS, V84, P309 GASTON KJ, 1998, TRENDS ECOL EVOL, V13, P70 HOCHACHKA PW, 1984, BIOCH ADAPTATION HODKINSON ID, 1996, FUNCT ECOL, V10, P314 HOFFMANN AA, 1995, TRENDS ECOL EVOL, V10, P1 HUEY RB, 1996, ANIMALS TEMPERATURE, P205 JAMES AC, 1997, GENETICS, V146, P881 JANZEN DH, 1967, AM NAT, V101, P233 JOHNSTON IA, 1996, ANIMALS TEMPERATURE KLOK CJ, 1998, J INSECT PHYSIOL, V44, P615 KLOK CJ, 1997, J INSECT PHYSIOL, V43, P685 KLOK CJ, 1998, J THERM BIOL, V23, P131 LEE RE, 1991, INSECTS LOW TEMPERAT, P17 LUTTERSCHMIDT WI, 1997, CAN J ZOOL, V75, P1553 LUTTERSCHMIDT WI, 1997, CAN J ZOOL, V75, P1561 MELLANBY K, 1932, J EXP BIOL, V9, P222 MILLER K, 1982, COMP BIOCHEM PHYS A, V73, P595 MITCHELL JD, 1993, J INSECT PHYSIOL, V39, P523 MONGOLD JA, 1996, ANIMALS TEMPERATURE, P239 MULLER MJ, 1982, SELECTED CLIMATIC DA PURVIS A, 1995, COMPUT APPL BIOSCI, V11, P247 RAPOPORT EH, 1982, AREOGRAPHY GEOGRAPHI ROBERTS CS, 1991, PHYSIOL ENTOMOL, V16, P463 ROSENBERG NJ, 1983, MICROCLIMATE BIOL EN RUGGIERO A, 1998, BIOL J LINN SOC, V63, P283 SNYDER GK, 1975, AM NAT, V109, P93 SOMME L, 1989, BIOL REV, V64, P367 SOMME L, 1982, COMP BIOCH PHYSL A, V73, P519 SOMME L, 1991, INSECTS LOW TEMPERAT, P318 STANLEY SM, 1980, AUST J ZOOL, V28, P413 STEVENS GC, 1992, AM NAT, V140, P893 STEVENS GC, 1989, AM NAT, V133, P240 STOREY KB, 1996, ANNU REV ECOL SYST, V27, P365EnglishArticle230JNOIKOS ER -