TY - JOUR T1 - Co-declines in large mammals and dung beetles: an impending ecological cascade JF - Oikos Y1 - 2009 A1 - Nichols, E. A1 - Gardner, T. A. A1 - Peres, C. A. A1 - Spector, S. SP - 481 EP - 487 KW - co-decline KW - conservation KW - decline KW - extinction KW - mammal KW - resource AB - Biodiversity loss can precipitate extinction cascades and impair ecological processes. These ‘downstream’ effects will be exacerbated if functionally important taxa are tightly linked with species threatened by extinction or population decline. We review the current evidence that such a scenario is currently playing out in the linked declines of persistently hunted
mammal populations and the dung beetles communities (Coleoptera: Scarabaeidae: Scarabaeinae) that depend on them for adult and larval food resources. Through a close evolutionary association, mammal assemblages have played a fundamental role in structuring extant dung beetle communities. Today many game mammal species’ populations are severely depleted by subsistence or commercial hunting, especially in tropical forest systems. Multiple lines of evidence from temperate and tropical systems indicate that the regional-scale decline or extirpation of medium and large bodied mammal faunas can severely disrupt the diversity and abundance of dung beetle communities through alterations in the composition and availability of dung resources. These observed community disassemblies have significant short- and long-term implications for the maintenance of key ecosystem processes including nutrient recycling and secondary seed dispersal. Identifying the species- and community-level traits that buffer or exacerbate these species and functional responses is essential if we are to develop a better understanding of the cascading ecological consequences of hunting in tropical forests. VL - 118 IS - 4 N1 - [gmap markers=blank::40.782003745886755,-73.97163391113281 |zoom=15 |center=40.78531820515752,-73.9749813079834 |width=100% |height=400px |control=Small |type=Satellite] ER - TY - JOUR T1 - Stability, Abundance, and Niche Width in the Beetle Community Inhabiting Cow Dung JF - Oikos Y1 - 1978 A1 - Hanski, I. A1 - Koskela, H. SP - 290 EP - 298 KW - Dung beetles VL - 31 UR - ://A1978GU29100004 N1 - GU291OIKOS ER - TY - JOUR T1 - An experiment on dung removal by Aphodius larvae (Scarabaeidae) and earthworms JF - Oikos Y1 - 1977 A1 - Holter, P. SP - 130 EP - 136 VL - 28 ER - TY - JOUR T1 - Effect of dung-beetles (Aphodius spp.) and earthworms on the disappearance of cattle dung JF - Oikos Y1 - 1979 A1 - Holter, P. SP - 393 EP - 402 VL - 32 ER - TY - JOUR T1 - Resource Utilization and Local Coexistence in a Guild of Scarabaeid Dung Beetles (Aphodius spp.) JF - Oikos Y1 - 1982 A1 - Holter, Peter SP - 213 EP - 227 AB - Resource partitioning in a guild of 13 Aphodius species (adults) from cattle dung was studied along two dimensions in time - season and age of dung pats - and two dimensions in space - distribution of beetles among pats and microdistribution within pats. Moreover, total respiration of the guild in relation to season was roughly estimated. Most data were from one site in northern Zealand, Denmark. The energy requirements of this coprophagous guild varied widely through the season. Even at the time of maximum activity, the beetles assimilated only about 0.2% of the energy in a dung pat; hence there is no evidence of competition for food at normal population densities. Neither did other results indicate within-guild competition, past or present. Features like (1) the contagious distribution of beetles on evenly spaced, identical pats, (2) the positive association between species, and (3) habitat specializations within pats may have evolved as adaptations facilitating intraspecific contacts in populations which are often sparse in relation to chances of mating. /// Распределение ресурсов в группе из 13 видов Aphodius (имаго) из экскрементов крупного рогатого скота исследовали в двух временных измерениях - в отношении к сезону и возрасту экскрементов, и в двух пространственных измерениях - в отношении к распределению жуков в разных кучах экскрементов и их микрораспределению в пределах одной кучи. Помимо этого измеряли суммарное дыхание группы в течение сезона. Наибольшее число данных получено из одного местообитания в Северной Зеландии (Дания). Ð’ течение сезона энергитические потребности группы копрофагов сильно варьируют. Даже в период максимальной активности жуки ассимилируют около 0,2% энергии экскрементов. Поэтому нет доказательств конкуренции за пишу при нормальной плотности популяции. Другие результаты также показывают отсутствие конкуренции внутри группы в прошлом или Растоящем. Такие черты, как 1. контагиозное распределение жуков на равномерно расположенных идентичных кучах, 2. положительные ассоциации между видами и 3. пространственная специализация внутри экскрементов могут рассматриваться как адаптации, облегчающие внутривидовые контакты в популяциях, которые часто разрежены в отношении возможностей спаривания. PB - Blackwell Publishing on behalf of Nordic Society Oikos VL - 39 SN - 00301299 UR - http://www.jstor.org/stable/3544488 N1 - ArticleType: primary_article / Full publication date: Aug., 1982 / Copyright © 1982 Nordic Society Oikos ER - TY - JOUR T1 - Seasonal Change in Abundance of Large Nocturnal Dung Beetles (Scarabaeidae) in a Costa Rican Deciduous Forest and Adjacent Horse Pasture JF - Oikos Y1 - 1983 A1 - Janzen, D. H. SP - 274 EP - 283 VL - 41 UR - ://A1983RL35800016 N1 - Times Cited: 25Cited Reference Count: 36Cited References: ANDERSON JM, 1974, OECOLOGIA BERLIN, V14, P111 BARTHOLOMEW GA, 1978, J EXP BIOL, V73, P65 BORNEMISSZA GF, 1960, J AUST I AGR SCI, V26, P54 BORNEMISSZA GF, 1970, PEDOBIOLOGIA, V10, P1 COE M, 1977, E AFR WILDL J, V15, P49 EDMONDS WD, 1972, ANAL ESCUELA NACL CI, V19, P85 GILLARD P, 1967, J ANAT I AGR SCI, V38, P30 GILLON Y, 1971, P ANN TALL TIMBERS F, P419 HALFFTER G, 1966, FOLIA ENTOMOL MEXICO, V12, P312 HALFFTER G, 1977, QUAEST ENTOMOL, V13, P231 HANSKI I, 1979, ANN ENTOMOL FENN, V45, P1 HANSKI I, 1980, ANN ZOOL FENN, V17, P11 HANSKI I, 1980, OIKOS, V34, P293 HANSKI I, 1980, OIKOS, V34, P311 HEINRICH B, 1979, SCI AM, V241, P146 HOWDEN HF, 1978, BIOTROPICA, V10, P43 HOWDEN HF, 1975, BIOTROPICA, V7, P77 HOWDEN HF, 1952, COLEOPTS B, V6, P53 HOWDEN HF, 1981, CONTRIBUTIONS AM ENT, V18, P1 JANZEN DH, 1982, ANIM BEHAV, V30, P483 JANZEN DH, 1982, ECOLOGY JANZEN DH, 1981, ECOLOGY, V62, P587 JANZEN DH, 1981, ECOLOGY, V62, P593 JANZEN DH, 1973, ECOLOGY, V54, P687 JANZEN DH, 1982, OIKOS, V38, P150 JANZEN DH, 1982, SCIENCE, V215, P19 KOSKELA H, 1977, ANN ZOOL FENN, V14, P204 MACQUEEN A, 1975, CAN J PLANT SCI, V55, P961 MATTHEWS EG, 1960, THESIS CORNELL U ITH MERRITT RW, 1977, HILGARDIA, V45, P31 MOHR CO, 1943, ECOL MONOGR, V13, P275 OWEN DF, 1971, TROPICAL BUTTERFLIES WOLDA H, 1978, AM NAT, V112, P1017 WOLDA H, 1981, J ANIM ECOL, V50, P827 WOLDA H, 1978, J ANIM ECOL, V47, P369 WOODRUFF RE, 1973, ARTHROPODS FLORIDA, V8EnglishArticleRL358OIKOS ER - TY - JOUR T1 - Different ways of constructing octaves and their consequences on the prevalence of the bimodal species abundance distribution JF - Oikos Y1 - 1999 A1 - Lobo, J. M. A1 - Favila, M. E. SP - 321 EP - 326 KW - Dung beetles AB - Several studies on dung beetle communities suggest that their species abundance distribution is bimodal. This bimodality has been explained as a consequence of the mixture of local and non-local species in the communities. In this paper we demonstrate that bimodal distribution in dung beetles is a consequence of the method of octave construction, which increases the number of species present in the first octave. Although we do not rule out the existence of bimodality in species abundance distributions, we suggest that this should be confirmed by large sampling programs done at local and regional levels, and by the correct application of the octave construction method. VL - 87 UR - ://000084048400012 N1 - 262CQOIKOS ER - TY - JOUR T1 - Ephemeral resource patches as model systems for diversity-function experiments JF - Oikos Y1 - 2001 A1 - Finn, J. A. SP - 363 EP - 366 VL - 92 UR - ://000167560700019 ER - TY - JOUR T1 - The influence of species diversity on ecosystem productivity: how, where, and why? JF - Oikos Y1 - 2001 A1 - Fridley, Jason D. SP - 514 EP - 526 AB - The effect of species diversity on ecosystem productivity is controversial, in large part because field experiments investigat- ing this relationship have been fraught with difficulties. Unfortu- nately, there are few guidelines to aid researchers who must overcome these difficulties and determine whether global species losses seriously threaten the ecological and economic bases of terrestrial ecosystems. In response, I offer a set of hypotheses that describe how diversity might influence productivity in plant communities based on three well-known mechanisms: comple- mentarity, facilitation, and the sampling effect. Emphasis on these mechanisms reveals the sensitivity of any diversity-produc- tivity relationship to ecological context (i.e., where this relation- ship should be found); ecological context includes characteristics of the surrounding environment, temporal and spatial scales of observation, and the intensity of human management. In particu- lar, the legitimacy of the sampling effect as a mechanism of productivity enhancement is dependent upon the degree to which stochastic events influence immigration and extinction processes in a given ecosystem. A mechanistic approach also requires that the three mechanisms be separated and quantified in diversity experiments, and I examine the most appropriate analyses for doing so, focusing on the overyielding technique. Finally, I question why productivity per se is a relevant management concern in non-agricultural systems once relationships among diversity, productivity, and the qualities of the surrounding environment are considered. VL - 93 ER - TY - JOUR T1 - Elevation and climatic tolerance: a test using dung beetles JF - Oikos Y1 - 1999 A1 - Gaston, K. J. A1 - Chown, S. L. SP - 584 EP - 590 KW - arthropods KW - cold-hardiness KW - critical thermal maximum KW - desert KW - drosophila-melanogaster KW - latitudinal gradient KW - lepidoptera KW - namib KW - rapoports rule KW - temperature tolerance KW - tenebrionid beetles KW - terrestrial AB - An increase in the altitudinal range of occurrence of species in an assemblage with increasing elevation has been explained as a consequence of individual organisms having to be able to withstand a broader range of climatic conditions at higher elevations; the climatic variability hypothesis. Here we show that for scarab dung beetles (26 species) across an elevational transect (approx. 2500 In) in southern Africa thermal tolerance range does increase with increasing elevation across individuals and across species. The maximal thermal tolerance range exhibited increases slowly with elevation and the minimum range increases more rapidly. The mechanistic basis of the change appears to be one of rapidly changing critical thermal minimum (CTmin) with elevation and only small changes in critical thermal maximum (CTmax). Of course, even if the pattern of tolerance of species assumed by the climatic variability hypothesis is correct, an increase in altitudinal range with increasing elevation need not necessarily follow. However, although sampling has been limited, there does appear to be an elevational increase in altitudinal range for this species assemblage. VL - 86 UR - ://000082248200019 N1 - Times Cited: 8Cited Reference Count: 47Cited References: ALLEE WC, 1949, PRINCIPLES ANIMAL EC BENNETT AF, 1997, EVOLUTION, V51, P36 BLOCK W, 1982, COMP BIOCHEM PHYS A, V73, P581 BLOCK W, 1990, PHILOS T ROY SOC B, V326, P613 BRATTSTROM BH, 1968, COMP BIOCHEM PHYSIOL, V24, P93 CHOWN SL, 1999, IN PRESS BIOL REV CHOWN SL, 1992, S AFR J ANTARCT RES, V22, P51 DAVIS ALV, 1997, AFR J ECOL, V35, P10 DAVIS ALV, IN PRESS J BIOGEOGR DENLINGER DL, 1991, INSECTS LOW TEMPERAT, P131 DOBZHANSKY T, 1950, AM SCI, V38, P209 EDNEY EB, 1971, J EXP BIOL, V55, P253 FERGUSON SH, 1996, ECOGRAPHY, V19, P382 FLEISHMAN E, 1998, ECOLOGY, V79, P2482 GASTON KJ, 1999, OIKOS, V84, P309 GASTON KJ, 1998, TRENDS ECOL EVOL, V13, P70 HOCHACHKA PW, 1984, BIOCH ADAPTATION HODKINSON ID, 1996, FUNCT ECOL, V10, P314 HOFFMANN AA, 1995, TRENDS ECOL EVOL, V10, P1 HUEY RB, 1996, ANIMALS TEMPERATURE, P205 JAMES AC, 1997, GENETICS, V146, P881 JANZEN DH, 1967, AM NAT, V101, P233 JOHNSTON IA, 1996, ANIMALS TEMPERATURE KLOK CJ, 1998, J INSECT PHYSIOL, V44, P615 KLOK CJ, 1997, J INSECT PHYSIOL, V43, P685 KLOK CJ, 1998, J THERM BIOL, V23, P131 LEE RE, 1991, INSECTS LOW TEMPERAT, P17 LUTTERSCHMIDT WI, 1997, CAN J ZOOL, V75, P1553 LUTTERSCHMIDT WI, 1997, CAN J ZOOL, V75, P1561 MELLANBY K, 1932, J EXP BIOL, V9, P222 MILLER K, 1982, COMP BIOCHEM PHYS A, V73, P595 MITCHELL JD, 1993, J INSECT PHYSIOL, V39, P523 MONGOLD JA, 1996, ANIMALS TEMPERATURE, P239 MULLER MJ, 1982, SELECTED CLIMATIC DA PURVIS A, 1995, COMPUT APPL BIOSCI, V11, P247 RAPOPORT EH, 1982, AREOGRAPHY GEOGRAPHI ROBERTS CS, 1991, PHYSIOL ENTOMOL, V16, P463 ROSENBERG NJ, 1983, MICROCLIMATE BIOL EN RUGGIERO A, 1998, BIOL J LINN SOC, V63, P283 SNYDER GK, 1975, AM NAT, V109, P93 SOMME L, 1989, BIOL REV, V64, P367 SOMME L, 1982, COMP BIOCH PHYSL A, V73, P519 SOMME L, 1991, INSECTS LOW TEMPERAT, P318 STANLEY SM, 1980, AUST J ZOOL, V28, P413 STEVENS GC, 1992, AM NAT, V140, P893 STEVENS GC, 1989, AM NAT, V133, P240 STOREY KB, 1996, ANNU REV ECOL SYST, V27, P365EnglishArticle230JNOIKOS ER - TY - JOUR T1 - Habitat fragmentation and the functional efficiency of temperate dung beetles JF - Oikos Y1 - 2008 A1 - Rosenlew, Helena A1 - Roslin, Tomas SP - 1659 EP - 1666 AB - To understand how current patterns of habitat loss and fragmentation will ultimately affect ecosystem functioning, we need to match experimental manipulations of community structure with real changes occurring in the landscapes of today. In this study, we examine the consequences of habitat fragmentation on a key function: the decomposition of dung by invertebrates. In a microcosm experiment, we use previous observations of dung beetle assemblage structure in fragmented and intact landscapes to create realistic differences in assemblages of small, dung-dwelling species in the genus Aphodius. We ask whether such differences will affect ecosystem functioning, and how their effects compare to those of removing full functional groups: dung-dwelling Aphodius, tunnelling Geotrupes stercorarius, and/or earthworms. As measured by changes in dung fresh weight, we observe an overriding impact of removing G. stercorarius, with the amount of dung remaining at any one time doubling if the species is excluded. Compared to this major effect, there seem to be less effects of removing Aphodius, ambiguous effects of excluding earthworms, and no detectable effects of relatively minor changes in Aphodius assemblages as induced by current levels of fragmentation. Overall, our results support the general notion that different species contribute highly unevenly to overall ecosystem functioning. Most importantly though, our findings suggest that the functional consequences of habitat loss will depend on taxon-specific responses to landscape modification. Only by addressing these responses may we predict the actual consequences of habitat loss. VL - 117 ER - TY - JOUR T1 - Dung beetle movements at two spatial scales JF - Oikos Y1 - 2000 A1 - Roslin, T. SP - 323 EP - 335 KW - APHODIUS SCARABAEIDAE KW - butterfly KW - colonization KW - euphydryas-editha-bayensis KW - long-distance dispersal KW - melitaea-cinxia KW - metapopulation structure KW - migration KW - patch size KW - proclossiana-eunomia lepidoptera KW - resource utilization AB - To understand the dynamics of spatially structured populations, we need to know the level of movements at different spatial scales. This paper reports on Aphodius dung beetle movements at two scales: movements between dung pats within pastures, and movements between pastures. First, I test an assumption common to many recent models of spatially structured populations - that the probability of an individual moving between habitat patches decreases exponentially with distance. For dung beetles, I find sufficient evidence to reject this assumption. The distribution of dispersal distances was clearly leptokurtic, with more individuals moving short and long distances than expected on the basis of an exponential function. In contrast, the data were well described by a power function. I conclude that dung beetle movements include an element of non-randomness not captured by the simplistic exponential model. The power function offers a promising alternative, but the actual mechanisms behind the pattern need to be clarified. Second, I compare several species of Aphodius to each other. Although these species occur in the same network of habitat patches, their movement patterns are different enough to result in a mixture of different spatial population structures. Movements between pastures were more frequent the larger the species, the more specific its occurrence in relation to pat age, and the more specialized it is on cow dung and open pasture habitats. Within pastures, all species form "patchy" populations, with much movement among individual pats. VL - 91 UR - ://000166017800013 N1 - Times Cited: 23Cited Reference Count: 75Cited References: 1996, RURAL BUSINESS REGIS BAGUETTE M, 1994, ECOL ENTOMOL, V19, P1 BALTHASAR V, 1963, MONOGRAPHIE SCARABAE BELL WJ, 1991, SEARCHING BEHAV BISTROM O, 1991, ENTOMOL FENNICA, V2, P53 BROMMER JE, 1999, ECOL ENTOMOL, V24, P125 CHATFIELD C, 1980, INTRO MULTIVARIATE A CLARK JS, 1998, BIOSCIENCE, V48, P13 DOBZHANSKY T, 1943, GENETICS, V28, P304 FERRANDINO FJ, 1993, PHYTOPATHOLOGY, V83, P795 FITT BDL, 1987, J PHYTOPATHOL, V118, P227 FRAMPTON VL, 1942, PHYTOPATHOLOGY, V32, P799 GARNER FH, 1944, CATTLE BRITAIN GITTINGS T, 1994, THESIS NATL U IRELAN GITTINGS T, 1997, ECOGRAPHY, V20, P55 GREGORY PH, 1968, ANNU REV PHYTOPATHOL, V6, P189 GYLLENBERG M, 1997, METAPOPULATION BIOL, P93 HANSKI I, 1977, OECOLOGIA, V28, P203 HANSKI I, 1980, ANIM BEHAV, V28, P953 HANSKI I, 1980, ANN ZOOL FENN, V17, P11 HANSKI I, 1980, ANN ZOOL FENN, V17, P17 HANSKI I, 1980, OIKOS, V34, P293 HANSKI I, 1986, ACTA OECOL-OEC GEN, V7, P171 HANSKI I, 1987, NUTR ECOLOGY INSECTS, P837 HANSKI I, 1990, LIVING PATCHY ENV, P127 HANSKI I, 1991, DUNG BEETLE ECOLOGY HANSKI I, 1991, DUNG BEETLE ECOLOGY, P75 HANSKI I, 1994, BIOL CONSERV, V68, P167 HANSKI I, 1994, ECOLOGY, V75, P747 HANSKI I, 1994, J ANIM ECOL, V63, P151 HANSKI I, 1997, METAPOPULATION BIOL, P5 HANSKI I, 1999, METAPOPULATION ECOLO HARRISON S, 1988, AM NAT, V132, P360 HARRISON S, 1989, ECOLOGY, V70, P1236 HARRISON S, 1991, BIOL J LINN SOC, V42, P73 HARRISON S, 1994, LARGE SCALE ECOLOGY, P111 HARRISON S, 1997, METAPOPULATION BIOL, P27 HILL JK, 1996, J ANIM ECOL, V65, P725 HOLTER P, 1982, OIKOS, V39, P213 HOSMER DW, 1989, APPL LOGISTIC REGRES HOWE HF, 1986, PLANT ECOL, P185 IBRAHIM KM, 1996, HEREDITY 3, V77, P282 JOHNSON ML, 1990, ANNU REV ECOL SYST, V21, P449 KIYOSAWA S, 1972, ANN PHYTOPATHOL SOC, V38, P41 KOSKELA H, 1977, ANN ZOOL FENN, V14, P204 KOSKLELA, 1979, OIKOS, V33, P419 KOT M, 1996, ECOLOGY, V77, P2027 KUUSSAARI M, 1996, J ANIM ECOL, V65, P791 LANDIN BO, 1961, OPUSC ENTOMOL LUND S, V19, P1 LEWIS MA, 1997, SPATIAL ECOLOGY ROLE, P46 LUMARET PJ, 1990, ATLAS COLEOPTERES SC MATTER SF, 1996, OECOLOGIA, V105, P447 MOLLISON D, 1977, J ROY STAT SOC B MET, V39, P283 NEVE G, 1996, J APPL ECOL, V33, P14 NICHOLS RA, 1994, HEREDITY, V72, P312 NIEMINEN M, 1996, OECOLOGIA, V108, P643 NIEMINEN M, 1998, J ANIM ECOL, V67, P149 NIEMINEN M, 1999, ECOGRAPHY, V22, P697 NILSSON T, 1997, ACTA U UPS ABSTR UPP, P311 NILSSON T, 1997, ECOL ENTOMOL, V22, P82 OTRONEN M, 1983, J ANIM ECOL, V52, P663 RAINIO M, 1966, ANN ZOOL FENN, V3, P88 ROFF D, 1977, J ANIM ECOL, V46, P443 ROSLIN T, 1999, THESIS U HELSINSKI SILFVERBERG H, 1992, ENUMERATIO COLEOPTEO SOUTHWOOD TRE, 1962, BIOL REV, V37, P171 STACEY PB, 1997, METAPOPULATION BIOL, P267 SUTCLIFFE OL, 1997, OECOLOGIA, V109, P229 TAYLOR RAJ, 1978, ECOL ENTOMOL, V3, P63 THOMAS CD, 1997, METAPOPULATION BIOL, P359 TURCHIN P, 1998, QUANTITATIVE ANAL MO UNRUH TR, 1993, CAN ENTOMOL, V125, P55 WAHLBERG N, 1996, SCIENCE, V273, P1536 WHITE E, 1960, ENTOMOL MON MAG, V96, P25 WHITLOCK MC, 1992, AM NAT, V139, P952EnglishArticleOIKOS385RQ ER -